Prvky stability životního prostředí na Zemi

15.04.2017 22:11

 

Život na Zemi se vyskytuje pouze v tenké vrstvě na rozhraní zemské kůry a atmosféry a zejména pak v hydrosféře.

Tloušťka biosféry činí jen dvě desítky kilometrů (při poloměru Země zhruba 6400 km); objemem tedy zabírá jen 0,3 promile objemu Země! Fyzikální a chemické podmínky v této vrstvě jsou neuvěřitelně stabilní. Na tom má zásluhu stálý zářivý výkon Slunce, který během tisíciletí kolísá nanejvýš o 0,3 promile, a samozřejmě i stálá oběžná dráha Země kolem Slunce. Dalším podstatným faktorem je výskyt tekuté vody zejména v oceánech, což představuje fantasticky přesně vyladěný termostat. V tomto smyslu je Země jedinečnou planetou ve sluneční soustavě - na nejbližších sousedních planetách Venuši a Marsu se tekutá voda na povrchu vůbec nevyskytuje a podmínky pro život tam dnes rozhodně neexistují. Díky oceánům se proto Země v minulosti ani příliš neochladila ani nepřehřála.

Průměrná teplota zemského povrchu činí v současné době + 15o C, což je zhruba o 30o C více, než kolik by měla planeta v téže poloze vůči Slunci, ale bez zemské atmosféry. Rozdíl je dán tzv. skleníkovým efektem: některé atmosférické plyne dobře propouštějí viditelné záření Slunce směrem k zemském povrchu, který se tak ohřívá a vyzařuje zpět do prostoru převážně tepelné infračervené záření. Pro toto infračervené záření jsou však "skleníkové plyny" nepropustné, takže toto záření přispívá ke zvýšení průměrné teploty Země. Hlavními skleníkovými plyny jsou vodní pára, oxid uhličitý a metan.

Podobný účinek však mají i člověkem vyráběné chlorfluorokarbony, které navíc rozkládají ochrannou ozonovou vrstvu ve vysoké atmosféře Země (tak vznikají pověstné ozonové díry v oblasti Antarktidy v období nástupu jara na jižní polokouli). Ozonová vrstva normálně brání přístupu životu nebezpečnému ultrafialovému záření Slunce až na zemský povrch. Existence ozonové vrstvy úzce souvisí s výskytem kyslíku v zemské atmosféře. Ještě před 700 miliony let bylo kyslíku v zemské atmosféře tak málo, že ozonová vrstva neměla z čeho vznikat. V době, kdy ozonová vrstva neexistovala, byl život na Zemi omezen na hlubší pásma v mořích a jezerech (voda totiž ultrafialové záření vydatně pohlcuje).

Před účinky elektricky nabitých částic kosmického záření a zejména tzv. slunečního větru je povrch Země chráněn geomagnetickým polem, které má charakter dipólu s magnetickou osou mírně skloněnou k ose rotace. Původ geomagnetického pole hledají odborníci v efektu dynama, kdy v převážně kovovém zemském jádře tečou elektricky vodivé vrstvy tempem několika metrů za hodinu vůči obdobným vrstvám ve vnitřním plášti Země. Dosud nejdelší homeostatický cyklus na Zemi objevili geologové teprve nedávno. Růst zastoupení oxidu uhličitého v atmosféře znamená zvýšení velikosti skleníkového efektu, a tedy celkové oteplení Země. Tím se zvyšuje výpar vody z řek, jezer a především oceánů, což má za následek mocnější dešťové srážky. Vodní kapičky vymývají oxid uhličitý z atmosféry, a ten je na povrchu oceánů dychtivě pohlcován planktonem, který jej včleňuje do svých organismů. Když plankton hyne, padají jeho ostatky na oceánské dno, kde se oxid uhličitý zabuduje do vápence (CaCO3). Vlivem podsouvání litosférických desek se vápenec dostává skluzem přes zemskou kůru do vnějšího pláště až do hloubek, kde se taví magmatickým ohřevem. Prostřednictvím sopek se takto znovu uvolněný oxid uhličitý dostává zpět do zemské atmosféry a tak opět ovlivňuje velikost skleníkového efektu. Celý cyklus trvá zhruba půl miliardy let.